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Abstract 

Background  Endocrine-resistant HR+/HER2- breast cancer (BC) and triple-negative BC (TNBC) are of interest for 
molecularly informed treatment due to their aggressive natures and limited treatment profiles. Patients of African 
Ancestry (AA) experience higher rates of TNBC and mortality than European Ancestry (EA) patients, despite lower 
overall BC incidence. Here, we compare the molecular landscapes of AA and EA patients with HR+/HER2- BC and 
TNBC in a real-world cohort to promote equity in precision oncology by illuminating the heterogeneity of potentially 
druggable genomic and transcriptomic pathways.

Methods  De-identified records from patients with TNBC or HR+/HER2- BC in the Tempus Database were randomly 
selected (N = 5000), with most having stage IV disease. Mutations, gene expression, and transcriptional signatures 
were evaluated from next-generation sequencing data. Genetic ancestry was estimated from DNA-seq. Differences 
in mutational prevalence, gene expression, and transcriptional signatures between AA and EA were compared. EA 
patients were used as the reference population for log fold-changes (logFC) in expression.

Results  After applying inclusion criteria, 3433 samples were evaluated (n = 623 AA and n = 2810 EA). Observed 
patterns of dysregulated pathways demonstrated significant heterogeneity among the two groups. Notably, PIK3CA 
mutations were significantly lower in AA HR+/HER2- tumors (AA = 34% vs. EA = 42%, P < 0.05) and the overall cohort 
(AA = 28% vs. EA = 37%, P = 2.08e−05). Conversely, KMT2C mutation was significantly more frequent in AA than 
EA TNBC (23% vs. 12%, P < 0.05) and HR+/HER2- (24% vs. 15%, P = 3e−03) tumors. Across all subtypes and stages, 
over 8000 genes were differentially expressed between the two ancestral groups including RPL10 (logFC = 2.26, 
P = 1.70e−162), HSPA1A (logFC = − 2.73, P = 2.43e−49), ATRX (logFC = − 1.93, P = 5.89e−83), and NUTM2F (logFC = 2.28, 
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P = 3.22e−196). Ten differentially expressed gene sets were identified among stage IV HR+/HER2- tumors, of which 
four were considered relevant to BC treatment and were significantly enriched in EA: ERBB2_UP.V1_UP (P = 3.95e−06), 
LTE2_UP.V1_UP (P = 2.90e−05), HALLMARK_FATTY_ACID_METABOLISM (P = 0.0073), and HALLMARK_ANDROGEN_
RESPONSE (P = 0.0074).

Conclusions  We observed significant differences in mutational spectra, gene expression, and relevant transcriptional 
signatures between patients with genetically determined African and European ancestries, particularly within the 
HR+/HER2- BC and TNBC subtypes. These findings could guide future development of treatment strategies by provid-
ing opportunities for biomarker-informed research and, ultimately, clinical decisions for precision oncology care in 
diverse populations.

Keywords  Breast cancer, Ancestry, Genomics, Transcriptomics

Introduction
Breast cancer (BC) is the most frequently diagnosed can-
cer in the USA and the second most common cause of 
cancer-related death in women [1], although there have 
been significant advances in treatment strategies over 
the past few decades. In addition to cytotoxic chemo-
therapy, endocrine therapy, and radiation therapy, in the 
molecular era, BC patients often receive targeted treat-
ments based on their unique cancer biology in both adju-
vant and neoadjuvant settings. For instance, anti-Human 
Epidermal Growth Factor Receptor  2 (HER2) therapy 
combined with chemotherapy has become the standard 
of care in  HER2-positive (HER2+) BCs [2, 3]. Hormone 
receptor-positive (HR+)/HER2- tumors have historically 
received endocrine therapy and, more recently, CDK4/6 
inhibitors as targeted treatments [4, 5]. Some molecularly 
targeted therapies have also emerged for triple-negative 
breast cancer (TNBC), such as poly-ADP ribose poly-
merase inhibitors for BRCA​-mutated tumors [6, 7] and 
checkpoint inhibitors for PD-L1+ tumors [9, 10]. Despite 
these advances, most patients with metastatic BC develop 
drug resistance or rapidly progress shortly after initiat-
ing guideline-informed systemic therapy. Increasingly, 
genomic testing is used to expand treatment options to 
overcome de novo or acquired resistance. Patients with 
HR+/HER2- tumors harboring a PIK3CA mutation, for 
example, experience a prolonged progression-free sur-
vival when treated with a phosphoinositide-3-kinase 
(PI3K) inhibitor in combination with endocrine therapy 
[8]. However, there is still much room for improvement 
in endocrine-resistant HR+/HER2- BC and TNBC sur-
vival due to their aggressive natures and relatively limited 
treatment options [9, 10].

TNBC is much less common than the HR+/HER2- 
subtype in the US population [11], but disproportionately 
affects patients of African ancestry (AA) compared to 
those of European ancestry (EA). Moreover, AA patients 
experience a 40% higher mortality rate than EA patients 
across all subtypes [11], despite lower incidence rates 
of BC overall. The complex biologic and social drivers 

causing these disparities are beginning to be revealed 
through rigorous studies. While socioeconomic factors 
like inadequate access to quality  care partially contrib-
ute to higher mortality, outcome disparities remain even 
after adjusting for these factors [12]. Several studies point 
to biological differences in the molecular drivers and evo-
lutionary trajectory of BC based on ancestry. For exam-
ple, population-based studies have observed higher rates 
of germline BRCA1 mutations in AA compared to EA 
patients [13]. In addition to germline mutations, somatic 
mutational differences have also been reported. An anal-
ysis of tumor sequencing data in the Cancer Genome 
Atlas conducted by our group revealed a higher preva-
lence of TP53 mutations in AA patients and a lower prev-
alence of alterations in PIK3CA [14]. In this same dataset, 
TP53 mutations were found to be a positive predictor for 
recurrence. These data and similar reports demonstrate 
a significant contribution of genomic differences to the 
mortality gap between AA and EA patients with BC and 
point to differential drivers of disease that may be poten-
tial therapeutic targets [15].

There is a paucity of molecular and clinical data from 
underserved and understudied populations, and the  few 
studies using molecular assessments have been under-
powered to demonstrate prognostic value in AA patients 
with BC in the USA [16, 17]. Analyses of comprehen-
sive, large-scale oncology databases are needed to close 
the knowledge gap and address the unmet clinical need 
of diverse patient populations. Here, we performed a ret-
rospective analysis of genomic and transcriptomic breast 
tumor sequencing data from Tempus’ large database and 
compared results between AA and EA patients. Further-
more, we estimated genetic ancestry employing ancestry-
informative markers (AIMs) tailored specifically to our 
genomic data [18], which can fill gaps in race/ethnicity 
metadata from electronic health records (EHRs), provide 
more meaningful biological insights, and increase data 
availability in under-researched ancestral populations. 
Combining ancestry estimations, EHR metadata, genom-
ics, and transcriptomics in this real-world cohort may 
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guide the future development of treatment strategies by 
providing data for biomarker-informed research and pre-
cision cancer care.

Methods
Cohort selection
A sample of de-identified records from patients with 
TNBC or HR+/HER2- BC in the Tempus Database was 
randomly selected (N = 5000). A subset of those records 
was included for analyses after applying relevant inclu-
sion criteria and performing genomic ancestry estimates 
to identify AA and EA patients (n = 3433). Clinical and 
molecular data were abstracted from patient records as 
previously described [19]. To be included in the cohort, 
all patients required results from either the Tempus xT 
(648-gene targeted panel) or Tempus xE (whole-exome) 
next-generation sequencing (NGS) assay. Furthermore, 
only AA or EA patients with known BC subtypes, stages 
at diagnosis, treatment histories, ages, biopsy sites at the 
time of testing, and histology (lobular vs. ductal) were 
selected.

Classification of patients by genetic ancestry
Although a portion of the patient records contained race 
and ethnicity metadata obtained from order forms or by 
abstraction of clinical documents, we opted to estimate 
global genetic ancestry proportions in the cohort using 
NGS data. The intent of this approach was to maximize 
the amount of patient records available for analysis, as 
race and ethnicity data are sometimes scarce in clinical 
reports, but also to ensure consistency in comparisons 
between genetically relevant ancestries and molecular 
markers. Furthermore, genetic ancestry estimates gen-
erally complement self-reported race and/or ethnicity, 
as we have previously found the two metrics to be con-
cordant [14]. From the representative sample of patient 
records described above (N = 5000), a supervised ver-
sion of the ADMIXTURE algorithm [20] was applied to a 
predefined set of AIMs detected in the DNA sequencing 
data of each patient sample to estimate ancestry propor-
tion likelihoods for five major continental regions: Africa, 
Americas, East Asia, Europe, and South Asia, as defined 
in the 1000 Genomes Project (Additional file 1: Table S1) 
[21]. When a matched normal tissue sample was avail-
able (n = 3358), the algorithm was run on both tumor and 
normal NGS data, finding highly concordant ancestry 
proportions with either specimen for each patient (Africa 
r = 0.999, Americas r = 0.9993, East Asia r = 0.9997, Euro-
pean r = 0.9998, South Asia r = 0.9977; Pearson’s r, Addi-
tional file 2: Fig. S1).

The ancestry inference algorithm uses 654 and 6711 
AIMs overlapping the regions targeted by the Tempus 
xT and Tempus xE assays, respectively. Considering the 

selected AIMs and their allele frequencies, ancestry pro-
portion likelihoods for the five aforementioned continen-
tal groups were calculated for each patient. Thresholds 
were then established to determine the genetic ancestry 
proportions required from each patient to be classified as 
AA or EA using a combination of admixture proportions 
reported in the literature for African-American and His-
panic/Latino groups in the USA [22], and by analyzing 
the ranges of genetic admixture present in patients with 
available race metadata from clinical records. Genetic 
ancestry was estimated as AA if likelihoods were > 20% 
African, < 10% American (Amerindian or Native Ameri-
can), and if the patient reached a total combined Afri-
can plus European likelihood of > 70%. Conversely, 
ancestry was estimated as EA if likelihoods were > 80% 
European and < 10% American. Patient records with 
genetically determined ancestries other than AA or EA 
were excluded from subsequent analyses.

Molecular profiling and comparative analyses
Mutational prevalence from the Tempus xT or xE assay 
and transcriptional signatures from whole-exome cap-
ture RNA-seq were evaluated [23, 24]. Briefly, Tempus 
xT includes a targeted panel DNA assay evaluating 648 
genes, whereas Tempus xE is a whole-exome DNA assay. 
Among the somatic single-nucleotide variants (SNVs), 
insertions/deletions (indels), copy number variants 
(CNVs), and select chromosomal rearrangements iden-
tified, variants were annotated as pathogenic or likely 
pathogenic based on evidence from the Tempus Data-
base including findings from the literature and public 
databases of association with carcinogenesis or cancer, as 
previously described [23]. DNA analyses were restricted 
to the 648 genes included in both platforms, ultimately 
including 3425 samples from the overall cohort due to 
quality control (AA n = 621, EA n = 2804).

The expression of each gene was compared between 
AA and EA patients with the edgeR software (v3.34.1) in 
R (v4.1.0) [25], stratified by stage and subtype. Methodol-
ogy was adapted to account for results from two different 
versions of the same RNA-seq assay that were included 
in the cohort. Although both versions were performed 
based on exome-capture with the same protocol, differ-
ences in probe design produced minor batch effects and 
were accounted for in statistical analyses. Evaluation of 
differential expression was conducted on samples meas-
ured with each assay separately. Then, computed P val-
ues per gene were combined using the wFisher method 
[26]. Additionally, log fold-changes (logFC) computed 
with each assay were combined using a weighted aver-
age by sample size for each assay. Results were filtered 
for genes that had the same logFC directionality between 
the two assays. There was no significant difference in the 
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proportions of the two different versions of the RNA-seq 
assay between EA (53% of samples evaluated with version 
1, 47% with version 2) and AA samples (49.6% of samples 
quantified with version 1, 50.4% with version 2).

Gene set enrichment scores were obtained for a series 
of relevant gene sets using a Python implementation of 
single-sample gene set enrichment analysis (ssGSEA) 
based on GSVA v1.46.0 [27]. ssGSEA calculates separate 
enrichment scores for each pairing of a sample and gene 
set. Each ssGSEA enrichment score represents the degree 
to which the genes in a particular gene set are coordi-
nately up- or down-regulated within a sample. For this 
study, ssGSEA was run using two gene sets: the Molecu-
lar Signature Database (MSigDB) hallmark gene set [28], 
a curated collection of well-defined biological states or 
processes, and the oncogenic signature gene set [29], 
which includes signatures of cellular pathways often dys-
regulated in cancer. These enrichment scores were then 
compared between AA and EA patients using limma 
[30].

Statistical analysis
Differences between the mutational prevalence of the 
genes harboring the highest number of alterations across 
both AA and EA patients were evaluated by a Pearson’s 
chi-squared test, stratified by subtype. When considering 
genes beyond the 15 most frequently mutated, P values 
were adjusted for multiple hypothesis testing. The sig-
nificance of differential gene expression was evaluated 
by edgeR with Bonferroni correction applied to adjust 
for multiple testing [25], where a threshold of 0.01 for 
meta-analysis P values was applied resulting in a cutoff 
of P < 1.0e−06. Transcriptional signatures of AA and EA 
patients were compared and evaluated by limma with 
Bonferroni correction, where a threshold of 0.01 for P 
values was applied resulting in a cutoff of P < 4.2e−05. In 
the portion of the cohort with available race metadata 
from clinical records, genetic ancestry classifications 
were compared to metadata using a Pearson’s chi-
squared test.

Results
Cohort overview and genetically determined ancestries
From the initial cohort of patients with BC (N = 5000), 
623 AA (12.5%) and 2810 EA (56%) patients were identi-
fied from NGS-based genetic ancestry inference. When 
considering the subset of patient records with available 
metadata of reported race (n = 2428), genetically deter-
mined ancestries were strongly correlated with the race 
metadata gathered from clinical settings (97% concord-
ance in AA and 91% in EA, Pearson’s chi-squared test of 
independence P < 2.2e−16; Additional file  3: Table  S2). 
Demographics and clinical characteristics of the final 

cohort comprising samples with genetically determined 
ancestries are presented in Table  1. The median ages at 
diagnosis were similar between AA and EA patients 
(53.74 and 56.01  years, respectively). The majority of 
samples sequenced were from cases with metastatic can-
cer, as stage IV was the most common stage reported 
in both groups with similar proportions for each ances-
try (AA = 83.3% vs. EA = 84.4%, P = 0.53; Table 1). HR+/
HER2- was the most prevalent subtype in both ances-
try groups, although HR+/HER2- diagnoses were rela-
tively more frequent in EA patients (AA = 35.5% vs. 
EA = 45.6%, P = 5.14e−06; Table  1). In contrast, TNBC 
was relatively more frequent in AA patients (AA = 23.0% 
vs. EA = 14.2%, P = 9.56e−08; Table 1), as expected based 
on overrepresentation of TNBC in AA populations 
[11]. Consistent with previous reports, AA patients had 
higher tumor grades than EA patients across the cohort 
(AA = 56.8% and EA = 42.6%, P = 5.59e−07; Table 1).

Distinct patterns in the mutational landscapes of African 
and European ancestry breast cancers
We next evaluated the prevalence of cancer somatic 
variants (SNVs, indels, and CNVs) classified as patho-
genic or likely pathogenic in each ancestral group to 
identify ancestry-specific differences in tumor DNA. 
Additional file 4: Table S3 contains the frequency of car-
riers for alterations in each of the genes compared, the P 
value from a direct comparison between the two ances-
try groups, and a P value adjusted for multiple hypoth-
esis testing, as well as the most frequent alterations for 
each ancestry group. In total, frequencies of alterations in 

Table 1  Clinical characteristics of African and European ancestry 
patients

Characteristic African ancestry 
samples (n = 623)

European ancestry 
samples (n = 2810)

Mean (SD), Median age (years) 54.01 (12.59), 53.74 55.90 (13.37), 56.01

Stage, n (%)

0 0 (0.00) 1 (0.04)

I 11 (1.77) 92 (3.27)

II 48 (7.70) 152 (5.41)

III 45 (7.22) 193 (6.87)

IV 519 (83.31) 2372 (84.41)

Subtype, n (%)

HR+/HER2- 221 (35.47) 1281 (45.59)

Triple-Negative 143 (22.95) 400 (14.23)

Other 259 (41.57) 1129 (40.18)

Tumor Grade, n (%)

Low 163 (26.16) 980 (34.88)

High 354 (56.82) 1198 (42.63)

Unknown 106 (17.01) 632 (22.49)
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633 genes were compared between AA and EA patients 
across all subtypes, 625 genes were compared in HR+/
HER2- disease, and 612 in TNBC. Considering the top 15 
most frequently mutated genes across the entire cohort, 
TP53 was the most commonly mutated (AA = 59% vs. 
EA = 49%; Fig. 1A). When stratifying by subtype, though, 

the differences in TP53 frequencies were less pronounced 
than in the entire cohort (AA = 40% vs. EA = 37% for 
HR+/HER2- and AA = 90% vs. EA = 88% for TNBC; 
Fig. 1B and C, respectively).

Among HR+/HER2- disease, the most frequently 
mutated gene in both ancestral groups was PIK3CA, 

Fig. 1  Mutational Landscapes of African and European Ancestry Breast Cancer Patients (AA and EA, respectively). Oncoplots show the top 15 
pathogenic mutations in A all patients (AA n = 621, EA n = 2804), B patients with HR+/HER2- disease (AA n = 220, EA n = 1279), and C patients with 
triple-negative breast cancer (TNBC) (AA n = 143, EA n = 400)
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with a significantly higher rate in EA patients (AA = 34% 
vs. EA = 42%, P < 0.05; Fig. 1B). The rate of PTEN muta-
tion was also significantly higher in EA than AA patients 
(AA = 6% vs. EA = 12%, P < 0.05; Fig.  1B). For all other 
significant differences identified within the HR+/HER2- 
subtype, AA tumors exhibited higher mutation fre-
quencies, including in GATA3 (AA = 22% vs. EA = 14%), 
KMT2C (AA = 24% vs. EA = 15%), and FGFR1 (AA = 18% 
vs. EA = 12%) (P < 0.05 for all; Fig. 1B).

Nonsignificant trends were observed in TNBC 
patients, such as BRCA1 mutations being less preva-
lent in AA compared with EA patients (AA = 8% vs. 
EA = 12%, P = 0.13; Fig.  1C), and APOB being mutated 
at a higher rate (AA = 13% vs. EA = 8%, P = 0.09; Fig. 1C). 
Meanwhile, KMT2C mutations were significantly more 
prevalent in AA than EA patients with TNBC (AA = 23% 
vs. EA = 12%, P < 0.05; Fig. 1C).

Differential gene expression between African 
and European ancestry breast cancers
Using full-transcriptome RNA-sequencing data, we sur-
veyed gene expression by BC subtype and stage, iden-
tifying over 8000 genes with a significantly different 
expression between the two ancestral groups when con-
sidering all subtypes and stages (genes for which P < 0.05; 
Additional file 5: Table S4). The P value and logFC (with 
EA expression as the reference point) for each differen-
tially expressed gene are available in Additional file  5: 
Table  S4. As expected, there were variations in the pat-
terns of differentially expressed genes when stratifying 
the cohort by subtypes and stages (Fig. 2B and C).

Several genes included in clinical prognostic assays for 
HR+/HER2- cancer, such as the Oncotype DX Breast 
Recurrence Score test, were identified as differentially 
expressed between the two ancestral groups (Fig.  2B, 
Additional file  5: Table  S4). BAG1 and BCL2 were 
expressed significantly higher in AA patients with HR+/
HER2- disease (stages I-III and stage IV, respectively), 
which have both been associated with favorable out-
comes [31, 32]. However, many genes related to poor sur-
vival were also expressed higher in AA patients compared 
to EA patients, specifically in the stage IV HR+/HER2- 
subset, including BIRC5 [33], CCNB1 [34], UBE2C [35], 
CENPA [36], and RRM2 [37] (Additional file 5: Table S4). 
Meanwhile, SCUBE2, a gene with high expression linked 
to favorable outcomes [38], was expressed significantly 
lower in AA compared to EA patients with stage IV 
HR+/HER2- tumors (Additional file 5: Table S4).

Although there were less well-established expression-
based biomarkers for TNBC, many of the differentially 
expressed genes identified between ancestral groups 
could carry prognostic implications in BC or other can-
cers (Fig.  2C, Additional file  5: Table  S4). Interestingly, 

some of the genes with the strongest logFCs were dif-
ferentially expressed in most subtypes and stages, such 
as HSPA1A (“All Subtypes, All Stages” logFC = − 2.73, 
P = 2.43e−49) [39], RPL10 (“All Subtypes, All Stages” 
logFC = 2.26, P = 1.70e−162) [40], NUTM2F (“All Sub-
types, All Stages” logFC = 2.28, P = 3.22e−196), and ATRX 
(“All Subtypes, All Stages” logFC = − 1.93, P = 5.89e−83) 
(Additional file  5: Table  S4). Furthermore, genes with 
implications for therapeutic research, such as those asso-
ciated with immunotherapy mechanisms, were found 
to be differentially expressed in TNBCs. For example, 
CD70 was significantly higher in AA compared with EA 
patients among those with stage IV TNBC (logFC = 1.40, 
P = 7.46e−07). Various HLA genes were also differentially 
expressed across the cohort. HLA-DRA, for instance, was 
significantly lower in AA patients of every subtype and 
stage combination except for the “All Subtypes, Stage IV” 
and “HR+/HER2-, Stages I-III” subsets (“All Subtypes, All 
Stages” logFC = − 1.47, P = 9.57E−16; Additional file  5: 
Table S4).

Transcriptional signature activation differences 
between African and European ancestry breast cancers
While individual gene expression differences were found 
between the ancestral groups, simultaneous up- or down-
regulation of related genes in a pathway can have broader 
implications for biological processes. To investigate, we 
measured the differential expression of predefined, bio-
logically relevant gene sets between AA and EA patients 
using ssGSEA. Figure 3 contains volcano plots displaying 
a general overview of the differentially expressed gene 
sets observed. Of the 152 gene sets evaluated, 125 exhib-
ited significantly different enrichment between AA and 
EA patients across the entire cohort (n = 3433, Additional 
file 5: Table S5) and when stratifying by stage (58 differ-
entially enriched sets by ancestry in stages I-III, n = 542, 
Fig.  3A; 118 sets in stage IV, n = 2891, Fig.  3A). Differ-
ential enrichments were also observed between ances-
tral groups in the HR+/HER2- subtype (73 gene sets, 
n = 1502, Additional file 6: Table S5), many of which per-
sisted when only assessing patients with stage IV disease 
(64 differentially enriched gene sets, n = 1287, Fig.  3B) 
but not in stages I-III (no differentially enriched gene 
sets, n = 215, Fig.  3B). Interestingly, no differences were 
observed when comparing gene set expression between 
ancestral groups within the TNBC subpopulation, even 
when stratifying by stage (Fig. 3C). A full list of gene sets 
with their associated logFCs and P values from ssGSEA is 
available in Additional file 6: Table S5.

From the gene sets in Additional file  6: Table  S5, five 
differentially expressed sets were considered particularly 
relevant to BC biology: ERBB2_UP.V1_UP, LTE2_UP.V1_
UP, HALLMARK_FATTY_ACID_METABOLISM, 



Page 7 of 13Miyashita et al. Breast Cancer Research           (2023) 25:58 	

HALLMARK_ANDROGEN_RESPONSE, and HALL-
MARK_ESTROGEN_RESPONSE_LATE [28, 41]. Com-
parisons of ssGSEA results between ancestral groups for 
each of these BC-related gene sets are presented in Fig. 4, 
stratified by subtype (HR+/HER2- or TNBC) and stage 
(I–III or IV). Among stage IV patients with HR+/HER2- 
disease, ERBB2_UP.V1_UP (Fig.  4A, P = 3.95e−06), 
LTE2_UP.V1_UP (Fig.  4B, P = 2.90e−05), HALLMARK_
ANDROGEN_RESPONSE (Fig.  4C, P = 0.0074), and 
HALLMARK_FATTY_ACID_METABOLISM (Fig.  4D, 
P = 0.0073) were significantly enriched in EA patients. 

Again, none of the above gene sets were differentially 
enriched in any TNBC groups or stage I-III HR+/HER2- 
patients. Furthermore, there were no significant differ-
ences in HALLMARK_ESTROGEN_RESPONSE_LATE 
enrichment between AA and EA patients within any sub-
type-stage combination (Fig. 4E).

Discussion
The results from our large-scale study provide inno-
vative insight by presenting genomic and transcrip-
tomic differences between BC tumors from AA and EA 

Fig. 2  Differential Gene Expression Between Patients of African and European Ancestry (AA and EA, respectively). The volcano plots show all 
differentially expressed genes between AA and EA patients for A all breast cancer subtypes (n = 3433), B HR+/HER2- samples (n = 1502), and C 
triple-negative samples (n = 543). Gene sets were plotted by log fold-changes (logFC, x-axes) and meta P values (y-axes). Significance cutoffs were 
defined for each group, and gene sets with significantly different enrichment between ancestral groups were highlighted in green
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patients, with findings stratified by clinical features in 
a real-world cohort. The findings indicate the utility of 
assessing molecular landscapes when conducting both 
basic research and clinical trials according to the spe-
cific ancestries, as well as reveal biologically different 
mechanisms between AA and EA patients. Importantly, 
the mechanisms identified carry implications for use of 
molecularly targeted therapy to broaden early access to 
clinical trials, including the use of combination therapies 

in patients with residual disease after neoadjuvant ther-
apy to prevent metastases and late recurrences.

In this cohort, the frequency of TP53 mutation was 
higher in AA than EA, which is consistent with previ-
ous reports, but there were no significant differences 
between ancestries in the stratified subtypes [14, 42, 43]. 
While TP53 mutations were much more frequent in AA 
patients with TNBC, our results indicate that the higher 
frequency of TP53 mutation in AA tumors from the 
entire cohort is due to the higher incidence of TNBC in 

Fig. 3  Differential Enrichment of Hallmark and Oncogenic Signature Gene Sets Between African and European Ancestry Patients (AA and EA, 
respectively). The volcano plots show all differentially expressed gene sets between AA and EA patients for A all breast cancer subtypes (n = 3433), 
B HR+/HER2- samples (n = 1502), and C triple-negative samples (n = 543). Gene sets were plotted by log fold-changes (logFC, x-axes) and limma P 
values (y-axes). Significance cutoffs were defined for each group, and gene sets with significantly different enrichment between ancestral groups 
were highlighted in green
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Fig. 4  Differential Enrichment of Breast Cancer-Related Gene Sets in African and European Ancestry Patients (AA and EA, respectively). Violin 
plots depicting five gene sets from the hallmark and oncogenic signature collections that were considered particularly relevant to breast cancer 
biology, including: A ERBB2_UP.V1_UP, B LTE2_UP.V1_UP, C HALLMARK_ANDROGEN_RESPONSE, D HALLMARK_FATTY_ACID_METABOLISM, and E 
HALLMARK_ESTROGEN_RESPONSE_LATE. Only patients with stage IV HR+/HER2- disease exhibited differential enrichment in these gene sets (A–D), 
with the exception of the estrogen response pathway (E), which had no significantly different enrichment between ancestral groups
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AA. We also observed a significantly lower mutation rate 
of PIK3CA in AA tumors, particularly in patients with 
HR+/HER2- tumors. Luminal-type tumors are more 
likely to have PIK3CA mutations, providing opportuni-
ties for molecularly targeted therapy to improve survival 
[44]. Several compounds targeting PIK3CA have been 
studied and the US Food and Drug Administration has 
approved the first PI3K inhibitor alpelisib for advanced 
luminal BC harboring the PIK3CA mutation [8]. While 
the frequency of PIK3CA mutation was lower, any AA 
patient with identifiable mutations would be expected 
to benefit from alpelisib, but lack of access to molecu-
lar diagnosis could continue to drive racial disparities in 
outcomes for these patients. This underscores the need 
to consider each patient as an individual and utilize NGS 
testing early to capture patients with unique tumor biol-
ogy and druggable pathways who would benefit from 
molecularly targeted therapy and/or immunotherapy.

We observed trends suggesting differences in the rates 
of somatic BRCA1 and BRCA2 mutations. Previous 
studies have reported elevated frequency of BRCA1 and 
BRCA2 germline mutations among AA patients [45–47]; 
however, the somatic mutation differences by race have 
not been well documented up until now. While the differ-
ences were not significant, we observed a potential racial 
difference of somatic BRCA1 and BRCA2 mutations in 
both HR+/HER2- and TNBC subtypes. AA patients were 
more likely to have BRCA2 mutations within the HR+/
HER2- subtype, whereas EA patients were more likely to 
have BRCA1 mutations within the TNBC subtype. These 
findings and previous studies of germline alterations 
might also have implications for DNA repair-targeted 
therapies and/or immunotherapies [48].

KMT2C, a member of the myeloid/lymphoid or mixed-
lineage leukemia family that encodes a histone meth-
yltransferase, is one of the most frequently mutated 
genes in HR+ BC [49]. The deletion of KMT2C has been 
reported to be associated with resistance to endocrine 
therapy and worse prognosis [50]. We observed that the 
frequency of KMT2C mutation was significantly higher in 
AA than EA among TNBC patients (23% vs. 12%) as well 
as patients with HR+/HER2- tumors (24% vs. 15%), sug-
gesting that the loss of KMT2C function might dispro-
portionately affect the survival outcome of AA patients in 
both subtypes. Previous reports focusing on mutational 
differences between races also indicated that GATA3, 
which has a critical role in the development of luminal 
type BC, is mutated in around 10% of both AA and EA 
patients [42, 43]. In contrast, 22% of AA patients in our 
cohort had tumors with mutated GATA3 in HR+/HER2- 
subtypes, which might contribute to the racial disparity 
of luminal BC prognosis.

From the full-transcriptome RNA-sequencing data, we 
identified significantly different expression of over 8000 
independent genes between the two ancestral groups. 
Various genes were exclusively expressed according to 
subtype (HR+/HER2- or TNBC) or disease stage (stage 
I-III or stage IV). Here, it is worth mentioning that 
RPL10, which is responsible for DNA replication stress 
and promoting proliferation and oncogenesis [40], was 
expressed higher in AA patients throughout almost every 
subtype and stage. Whereas the higher expression of 
RPL10 is reported to be associated with poor prognosis 
mainly in hematologic malignancy [51, 52], its relation to 
prognosis in breast malignancy has not been fully investi-
gated. This transcriptomic change in AA patients regard-
less of subtype or stage might explain the prognostic 
disparity of AA patients and could be a potential thera-
peutic target in BC. On the other hand, HSPA1A, a mem-
ber of the heat shock protein 70 family, was significantly 
lower in AA patients in both HR+/HER2- BC and TNBC. 
The clinical significance of HSPA1A status is unknown in 
malignant tumors, including BC [53]. ATRX, which has a 
critical role in chromatin remodeling, was also expressed 
lower in AA patients in both HR+/HER2- BC and TNBC. 
Previous studies revealed that ATRX loss is associated 
with an increase in cancer aggressiveness [54]. Among 
a large number of genes with little genomic and clinical 
annotation, NUTM2F was significantly overexpressed in 
AA patients throughout subtypes and stages. Our com-
prehensive birds-eye view analysis has identified many 
potential genes to consider in future basic and clinical 
research.

When breaking down the enrichment analysis of hall-
mark gene sets into the subtypes and stages, 125 exhib-
ited significantly different enrichment between AA and 
EA patients across the entire cohort. No significant 
differences were observed when comparing gene set 
expression between ancestral groups within the TNBC 
subpopulation, even when stratifying by stage. Although 
the gene sets evaluated here are informative mark-
ers of oncogenic pathways, there are other collections 
of curated gene sets available for analysis, such as the 
KEGG pathways, and future studies could include these 
to provide a more thorough investigation of differences 
between AA and EA patients. Nevertheless, notable dif-
ferences in many mutations and individual gene expres-
sions between the two ancestral groups in TNBC were 
demonstrated as an initial assessment.

Meanwhile, among the stage IV HR+/HER2- group, 
10 differentially expressed gene sets were identified. 
As a translation from research to clinic, we revealed 
four differentially expressed gene sets relevant to 
BC treatment: ERBB2_UP.V1_UP, LTE2_UP.V1_UP, 
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HALLMARK_FATTY_ACID_METABOLISM, and 
HALLMARK_ANDROGEN_RESPONSE [28, 41]. In the 
stage IV HR+/HER2- group, these pathways could con-
tribute to worse prognosis of AA patients and, accord-
ingly, would be worth investigating in further prognostic 
studies consisting of AA and EA patients.

Our findings could have implications for prognosis, 
response to therapy, and enrollment of diverse popula-
tions in clinical trials and precision oncology studies. If 
genomic and transcriptomic differences are not consid-
ered, applying the results of clinical trials on the stud-
ied population (e.g., EA) to another population (e.g., 
AA) could lead to suboptimal treatment decisions. The 
molecular distinctions identified here indicate that the 
efficacy of novel targeted therapy combinations may dif-
fer by patient ancestry, and thus highlight an opportu-
nity to optimize neoadjuvant and adjuvant clinical trial 
design. Additionally, the availability of this data on a pop-
ulation level and for each patient should ultimately result 
in more clinical trial opportunities including early access 
to trials for more patients.

Some potential limitations of this study are the broad 
analyses and heterogeneity of the cohort, as the patients 
included in the study were highly selected and derived 
from various institutions and spanned multiple sub-
types and stages. Another is the lack of treatment data, 
as there is likely a mix of treatment-naïve and treatment-
refractory patients included in this study, and outcomes 
data. Nevertheless, in previous studies from our group, 
we examined NGS data using the Tempus xT assay in 
patients undergoing neoadjuvant chemotherapy from the 
Chicago Multiethnic Breast Cancer Cohort and found 
similar patterns [55]. Furthermore, the patient charac-
teristics were not entirely balanced between AA and EA, 
considering there were higher-grade tumors and more 
TNBCs in the AA patient group. Although our large 
sample size and stratifications by stage and subtype may 
have ameliorated the impact of differences in patients’ 
background between the two groups, our analyses did 
not directly address socioeconomic differences that could 
play roles in treatment outcomes. The incorporation of 
those additional factors is beyond the scope of this study 
and could be included in future studies.

Overall, these data show important differences in BC 
mutational spectrums, gene expression, and relevant 
transcriptional pathways between patients with geneti-
cally determined African and European ancestries, 
particularly within the HR+/HER2- BC and TNBC sub-
types. To serve diverse populations of patients diagnosed 
with BC, promote equitable access to clinical trials, and 
accelerate the development of clinical decision tools for 

precision care, future studies should focus on geogra-
phy and genetic ancestry when conducting biomarker-
informed, early-phase clinical trials.
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